Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microorganisms ; 12(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38399686

RESUMO

As we conclude this Special Issue on fungal biology and interactions, it is only appropriate to reflect on the remarkable progress our scientific community has made in unraveling the mysteries of the fungal kingdom [...].

2.
Microb Cell Fact ; 23(1): 51, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355518

RESUMO

BACKGROUND: In hematologic cancers, including leukemia, cells depend on amino acids for rapid growth. Anti-metabolites that prevent their synthesis or promote their degradation are considered potential cancer treatment agents. Amino acid deprivation triggers proliferation inhibition, autophagy, and programmed cell death. L-lysine, an essential amino acid, is required for tumor growth and has been investigated for its potential as a target for cancer treatment. L-lysine α-oxidase, a flavoenzyme that degrades L-lysine, has been studied for its ability to induce apoptosis and prevent cancer cell proliferation. In this study, we describe the use of L-lysine α-oxidase (LO) from the filamentous fungus Trichoderma harzianum for cancer treatment. RESULTS: The study identified and characterized a novel LO from T. harzianum and demonstrated that the recombinant protein (rLO) has potent and selective cytotoxic effects on leukemic cells by triggering the apoptotic cascade through mitochondrial dysfunction. CONCLUSIONS: The results support future translational studies using the recombinant LO as a potential drug for the treatment of leukemia.


Assuntos
Hypocreales , Leucemia , Neoplasias , Trichoderma , Humanos , Lisina , Apoptose , Leucemia/tratamento farmacológico , Necrose
3.
Microb Cell Fact ; 23(1): 22, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229067

RESUMO

BACKGROUND: Trichoderma reesei is an organism extensively used in the bioethanol industry, owing to its capability to produce enzymes capable of breaking down holocellulose into simple sugars. The uptake of carbohydrates generated from cellulose breakdown is crucial to induce the signaling cascade that triggers cellulase production. However, the sugar transporters involved in this process in T. reesei remain poorly identified and characterized. RESULTS: To address this gap, this study used temporal membrane proteomics analysis to identify five known and nine putative sugar transporters that may be involved in cellulose degradation by T. reesei. Docking analysis pointed out potential ligands for the putative sugar transporter Tr44175. Further functional validation of this transporter was carried out in Saccharomyces cerevisiae. The results showed that Tr44175 transports a variety of sugar molecules, including cellobiose, cellotriose, cellotetraose, and sophorose. CONCLUSION: This study has unveiled a transporter Tr44175 capable of transporting cellobiose, cellotriose, cellotetraose, and sophorose. Our study represents the first inventory of T. reesei sugar transportome once exposed to cellulose, offering promising potential targets for strain engineering in the context of bioethanol production.


Assuntos
Celulase , Glucanos , Hypocreales , Trichoderma , Celobiose/metabolismo , Proteoma/metabolismo , Proteínas de Membrana/metabolismo , Celulose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Celulase/metabolismo , Açúcares/metabolismo , Oligossacarídeos/metabolismo , Trichoderma/metabolismo
4.
J Fungi (Basel) ; 9(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132774

RESUMO

The fungus Trichoderma reesei is an essential producer of enzymes that degrade lignocellulosic biomass to produce value-added bioproducts. The cellulolytic system of T. reesei is controlled by several transcription factors (TFs) that efficiently regulate the production of these enzymes. Recently, a new TF named Azf1 was identified as a positive regulator of cellulase expression. Here, we investigated novel regulatory functions of Azf1 by its overexpression. In the mutant strain OEazf1, overexpression of azf1 was achieved under both repression and induction conditions. Although azf1 was more abundant in transcript and protein, overexpression of this TF did not activate transcription of the cellulase gene in the presence of the repressor glucose, suggesting that Azf1 may be subject to posttranslational regulation. In cellulose, the expression of swo, encoding the accessory protein swollenin, and the ß-glucosidases cel1a, cel1b, cel3b, and cel3g increases in the early stages of cultivation. The increased production of these ß-glucosidases increases the hydrolysis rate of cellobiose and sophorose, which activates carbon catabolite repression (CCR) and causes repression of cellulase genes and the regulator Xyr1 in the later stages of cultivation. Moreover, overexpression of azf1 led to increased cellulase activity in T. reesei during long-term cultivation in cellulose and sugarcane bagasse. Our results provide new insights into the mechanisms regulating Azf1 and novel genes that are important targets of this TF. This work contributes to a better understanding of the complex mechanisms regulating cellulase expression in T. reesei. It will contribute to the development of strains with higher production of these essential enzymes.

5.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362138

RESUMO

Xylooligosaccharides (XOS) are widely used in the food industry as prebiotic components. XOS with high purity are required for practical prebiotic function and other biological benefits, such as antioxidant and inflammatory properties. In this work, we immobilized the recombinant endo-1,4-ß-xylanase of Malbranchea pulchella (MpXyn10) in various chemical supports and evaluated its potential to produce xylooligosaccharides (XOS) from hydrothermal liquor of eucalyptus wood chips. Values >90% of immobilization yields were achieved from amino-activated supports for 120 min. The highest recovery values were found on Purolite (142%) and MANAE-MpXyn10 (137%) derivatives, which maintained more than 90% residual activity for 24 h at 70 °C, while the free-MpXyn10 maintained only 11%. In addition, active MpXyn10 derivatives were stable in the range of pH 4.0−6.0 and the presence of the furfural and HMF compounds. MpXyn10 derivatives were tested to produce XOS from xylan of various sources. Maximum values were observed for birchwood xylan at 8.6 mg mL−1 and wheat arabinoxylan at 8.9 mg mL−1, using Purolite-MpXyn10. Its derivative was also successfully applied in the hydrolysis of soluble xylan present in hydrothermal liquor, with 0.9 mg mL−1 of XOS after 3 h at 50 °C. This derivative maintained more than 80% XOS yield after six cycles of the assay. The results obtained provide a basis for the application of immobilized MpXyn10 to produce XOS with high purity and other high-value-added products in the lignocellulosic biorefinery field.


Assuntos
Eucalyptus , Xilanos , Madeira , Glucuronatos , Oligossacarídeos/química , Endo-1,4-beta-Xilanases , Prebióticos , Hidrólise
6.
Semin Cancer Biol ; 86(Pt 3): 590-599, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34606983

RESUMO

Cancer cells exhibit higher proliferation rates than normal cells, and as a consequence, a higher nutritional demand for metabolites such as amino acids. Such cells demonstrate high expression of amino acid transporters and are significantly dependent on the external uptake of amino acids. Moreover, some types of cancer cells exhibit oncogenic mutations that render them auxotrophic to certain amino acids. This metabolic difference between tumor and normal cells has been explored for developing anticancer drugs. Enzymes capable of depleting certain amino acids in the bloodstream can be employed to inhibit the proliferation of cancer cells and promote cell death. Certain microbial enzymes, such as l-asparaginase and l-amino acid oxidases, have been studied for this purpose. In this paper, we discuss the role of l-asparaginase, the only enzyme currently used as a chemotherapeutic agent. We also review the studies on a new potential antineoplastic agent, l-lysine α-oxidase, an enzyme of l-amino acid oxidase family.


Assuntos
Aminoácido Oxirredutases , Antineoplásicos , Leucemia , Humanos , Aminoácidos/metabolismo , Antineoplásicos/uso terapêutico , Asparaginase , Leucemia/tratamento farmacológico , Leucemia/genética , Lisina , Aminoácido Oxirredutases/uso terapêutico
8.
Biotechnol Rep (Amst) ; 31: e00652, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34258241

RESUMO

Trichoderma reesei is one of the major producers of holocellulases. It is known that in T. reesei, protein production patterns can change in a carbon source-dependent manner. Here, we performed a phosphorylome analysis of T. reesei grown in the presence of sugarcane bagasse and glucose as carbon source. In presence of sugarcane bagasse, a total of 114 phosphorylated proteins were identified. Phosphoserine and phosphothreonine corresponded to 89.6% of the phosphosites and 10.4% were related to phosphotyrosine. Among the identified proteins, 65% were singly phosphorylated, 19% were doubly phosphorylated, 12% were triply phosphorylated, and 4% displayed even higher phosphorylation. Seventy-five kinases were predicted to phosphorylate the sites identified in this work, and the most frequently predicted serine/threonine kinase was PKC1. Among phosphorylated proteins, four glycosyl hydrolases were predicted to be secreted. Interestingly, Cel7A activity, the most secreted protein, was reduced to approximately 60% after in vitro dephosphorylation, suggesting that phosphorylation might alter Cel7A structure, substrate affinity, and targeting of the substrate to its carbohydrate-binding domain. These results suggest a novel post-translational regulation of Cel7A.

9.
Methods Mol Biol ; 2234: 251-269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33165792

RESUMO

Transcriptomics is a powerful technique to study gene expression. The main purpose of transcriptome studies in the filamentous fungus Trichoderma reesei is the analysis of differentially expressed genes as a transcriptional response of the genome to different environmental stimuli or physiological conditions such as sugar availability, nitrogen metabolism, pH response, and oxidative stress, among others. Here we describe the full protocol of RNA sequencing methodology from RNA isolation to data analysis in order to access the T. reesei transcriptome.


Assuntos
Perfilação da Expressão Gênica/métodos , Hypocreales/genética , Transcriptoma/genética , DNA Complementar/genética , DNA Fúngico/genética , Análise de Dados , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Análise de Componente Principal , RNA Fúngico/genética , RNA Fúngico/isolamento & purificação , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , Reprodutibilidade dos Testes
10.
Fungal Biol ; 123(8): 565-583, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31345411

RESUMO

Large losses before crop harvesting are caused by plant pathogens, such as viruses, bacteria, oomycetes, fungi, and nematodes. Among these, fungi are the major cause of losses in agriculture worldwide. Plant pathogens are still controlled through application of agrochemicals, causing human disease and impacting environmental and food security. Biological control provides a safe alternative for the control of fungal plant pathogens, because of the ability of biocontrol agents to establish in the ecosystem. Some Trichoderma spp. are considered potential agents in the control of fungal plant diseases. They can interact directly with roots, increasing plant growth, resistance to diseases, and tolerance to abiotic stress. Furthermore, Trichoderma can directly kill fungal plant pathogens by antibiosis, as well as via mycoparasitism strategies. In this review, we will discuss the interactions between Trichoderma/fungal pathogens/plants during the pre-harvest of crops. In addition, we will highlight how these interactions can influence crop production and food security. Finally, we will describe the future of crop production using antimicrobial peptides, plants carrying pathogen-derived resistance, and plantibodies.


Assuntos
Antibiose , Produtos Agrícolas/microbiologia , Fungos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Trichoderma/fisiologia , Produtos Agrícolas/crescimento & desenvolvimento , Abastecimento de Alimentos , Fungos/fisiologia , Trichoderma/genética
12.
Biotechnol Adv ; 37(6): 107384, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31014935

RESUMO

The insights of nanotechnology for cellulosic biohydrogen production through dark fermentation are reviewed. Lignocellulosic biomass to sugar generation is a complex process and covers the most expensive part of cellulose to sugar production technology. In this context, the impacts of nanomaterial on lignocellulosic biomass to biohydrogen production process have been reviewed. In addition, the feasibility of nanomaterials for implementation in each step of the cellulosic biohydrogen production is discussed for economic viability of the process. Numerous aspects such as possible replacement of chemical pretreatment method using nanostructured materials, use of immobilized enzyme for a fast rate of reaction and its reusability along with long viability of microbial cells and hydrogenase enzyme for improving the productivity are the highlights of this review. It is found that various types of nanostructured materials e.g. metallic nanoparticles (Fe°, Ni, Cu, Au, Pd, Au), metal oxide nanoparticles (Fe2O3, F3O4, NiCo2O4, CuO, NiO, CoO, ZnO), nanocomposites (Si@CoFe2O4, Fe3O4/alginate) and graphene-based nanomaterials can influence different parameters of the process and therefore may perhaps be utilized for cellulosic biohydrogen production. The emphasis has been given on the cost issue and synthesis sustainability of nanomaterials for making the biohydrogen technology cost effective. Finally, recent advancements and feasibility of nanomaterials as the potential solution for improved cellulose conversion to the biohydrogen production process have been discussed, and this is likely to assist in developing an efficient, economical and sustainable biohydrogen production technology.


Assuntos
Fermentação , Biomassa , Celulose , Hidrogênio
13.
Biotechnol Adv ; 37(6): 107347, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30771467

RESUMO

Lignocellulose is a rich and sustainable globally available carbon source and is considered a prominent alternative raw material for producing biofuels and valuable chemical compounds. Enzymatic hydrolysis is one of the crucial steps of lignocellulose degradation. Cellulolytic and hemicellulolytic enzyme mixes produced by different microorganisms including filamentous fungi, yeasts and bacteria, are used to degrade the biomass to liberate monosaccharides and other compounds for fermentation or conversion to value-added products. During biomass pretreatment and degradation, toxic compounds are produced, and undesirable carbon catabolic repression (CCR) can occur. In order to solve this problem, microbial metabolic pathways and transcription factors involved have been investigated along with the application of protein engineering to optimize the biorefinery platform. Engineered Microorganisms have been used to produce specific enzymes to breakdown biomass polymers and metabolize sugars to produce ethanol as well other biochemical compounds. Protein engineering strategies have been used for modifying lignocellulolytic enzymes to overcome enzymatic limitations and improving both their production and functionality. Furthermore, promoters and transcription factors, which are key proteins in this process, are modified to promote microbial gene expression that allows a maximum performance of the hydrolytic enzymes for lignocellulosic degradation. The present review will present a critical discussion and highlight the aspects of the use of microorganisms to convert lignocellulose into value-added bioproduct as well combat the bottlenecks to make the biorefinery platform from lignocellulose attractive to the market.


Assuntos
Biocombustíveis , Biomassa , Hidrólise , Lignina
14.
Appl Biochem Biotechnol ; 187(1): 1-13, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29869746

RESUMO

Protein glycosylation is one of the most studied post-translational modifications and has received considerable attention for its critical role in the cell biology of eukaryotic cells. The genus Trichoderma has been extensively studied in the biocontrol of soil-borne fungal phytopathogens. The aim of this study was to identify the proteins secreted from Trichoderma harzianum after interacting with the cell walls of two phytopathogens, Sclerotinia sclerotiorum and Fusarium oxysporum. This study used N-glycoprotein enrichment with a concanavalin A (Con A) affinity column, staining detection differential SDS-PAGE, sequencing by mass spectrometric, and protein identification by comparison with the NCBI database to detect the protein expression of the two resulting secretome samples. The majority of the proteins found in both enriched secretomes belonged to a specific class of carbohydrate-active enzymes (CAZymes), within which glycosyl hydrolases (GHs), glycosyltransferases (GTs), and auxiliary activities (AAs) were identified. In this study was described two proteins that have not been previously reported in the secretomes of Trichoderma, a glycosyltransferase (six-harpin) and a galactose oxidase, belonging to the class of auxiliary activities (AA), classified as an AA subfamily AA5-2.The expression pattern of gene encoding to 17 identified proteins, evaluated by real-time quantitative PCR (RT-qPCR), showed significant difference of expression of some GHs and proteases, suggesting a specific gene expression regulation by T. harzianum in presence of different cell walls of two phytopathogens.


Assuntos
Cromatografia de Afinidade/métodos , Concanavalina A/química , Proteínas Fúngicas/metabolismo , Glicoproteínas/metabolismo , Trichoderma/metabolismo , Ascomicetos/metabolismo , Parede Celular/metabolismo , Bases de Dados de Proteínas , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/genética , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Glicoproteínas/genética , Espectrometria de Massas , Reação em Cadeia da Polimerase em Tempo Real , Trichoderma/enzimologia , Trichoderma/genética
15.
Front Microbiol ; 9: 2556, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30420843

RESUMO

Beta-glucosidases are key enzymes involved in lignocellulosic biomass degradation for bioethanol production, which complete the final step during cellulose hydrolysis by converting cellobiose into glucose. Currently, industry requires enzymes with improved catalytic performance or tolerance to process-specific parameters. In this sense, metagenomics has become a powerful tool for accessing and exploring the biochemical biodiversity present in different natural environments. Here, we report the identification of a novel ß-glucosidase from metagenomic DNA isolated from soil samples enriched with decaying plant matter from a Secondary Atlantic Forest region. For this, we employed a functional screening approach using an optimized and synthetic broad host-range vector for library production. The novel ß-glucosidase - named Lfa2 - displays three GH3-family conserved domains and conserved catalytic amino acids D283 and E487. The purified enzyme was most active in pH 5.5 and at 50°C, and showed hydrolytic activity toward several pNP synthetic substrates containing ß-glucose, ß-galactose, ß-xylose, ß-fucose, and α-arabinopyranose, as well as toward cellobiose. Lfa2 showed considerable glucose tolerance, exhibiting an IC50 of 300 mM glucose and 30% of remaining activity in 600 mM glucose. In addition, Lfa2 retained full or slightly enhanced activity in the presence of several metal ions. Further, ß-glucosidase activity was increased by 1.7-fold in the presence of 10% (v/v) ethanol, a concentration that can be reached in conventional fermentation processes. Similarly, Lfa2 showed 1.7-fold enhanced activity at high concentrations of 5-hydroxymethyl furfural, one of the most important cellulase inhibitors in pretreated sugarcane bagasse hydrolysates. Moreover, the synergistic effect of Lfa2 on Bacillus subtilis GH5-CBM3 endoglucanase activity was demonstrated by the increased production of glucose (1.6-fold). Together, these results indicate that ß-glucosidase Lfa2 is a promissory enzyme candidate for utilization in diverse industrial applications, such as cellulosic biomass degradation or flavor enhancement in winemaking and grape processing.

16.
Biotechnol Biofuels ; 11: 84, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619080

RESUMO

BACKGROUND: Trichoderma reesei is a saprophytic fungus implicated in the degradation of polysaccharides present in the cell wall of plants. T. reesei has been recognized as the most important industrial fungus that secretes and produces cellulase enzymes that are employed in the production of second generation bioethanol. A few of the molecular mechanisms involved in the process of biomass deconstruction by T. reesei; in particular, the effect of sugar transporters and induction of xylanases and cellulases expression are yet to be known. RESULTS: In our study, we characterized a novel sugar transporter, which was previously identified by our group through in silico analysis of RNA-seq data. The novel T. reesei 69957-sugar transport system (Tr69957) is capable of transporting xylose, mannose, and cellobiose using a T. reesei 69957-sugar transport system in Saccharomyces cerevisiae. The deletion of Tr69957 in T. reesei affected the fungal growth and biomass accumulation, and the sugar uptake in the presence of mannose, cellobiose, and xylose. Molecular docking studies revealed that Tr69957 shows reduced protein-ligand binding energy for interactions towards disaccharides in comparison with monosaccharides. Furthermore, the deletion of Tr69957 affected the gene expression of cellobiohydrolases (cel7a and cel6a), ß-glucosidases (cel3a and cel1a), and xylanases (xyn1 and xyn2) in the cultures of parental and mutant strains in the presence of cellobiose and sugarcane bagasse (SCB). CONCLUSION: The transporter Tr69957 of T. reesei can transport cellobiose, xylose, and mannose, and can affect the expression of a few genes encoding enzymes, such as cellulases and xylanases, in the presence of SCB. We showed for the first time that a filamentous fungus (T. reesei) contains a potential mannose transporter that may be involved in the degradation of cellulose.

17.
Front Plant Sci ; 8: 880, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611802

RESUMO

Several Trichoderma spp. are well known for their ability to: (i) act as important biocontrol agents against phytopathogenic fungi; (ii) function as biofertilizers; (iii) increase the tolerance of plants to biotic and abiotic stresses; and (iv) induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δepl-1 or wild-type T. harzianum strains with: (a) the phytopathogen Botrytis cinerea and (b) with tomato plants, on short (24 h hydroponic cultures) and long periods (4-weeks old plants) after Trichoderma inoculation. Our results indicate that T. harzianum Epl-1 protein affects the in vitro expression of B. cinerea virulence genes, especially those involved in the botrydial biosynthesis (BcBOT genes), during the mycoparasitism interaction. The tomato defense-related genes were also affected, indicating that Epl-1 is involved in the elicitation of the salicylic acid pathway. Moreover, Epl-1 also regulates the priming effect in host tomato plants and contributes to enhance the interaction with the host tomato plant during the early stage of root colonization.

18.
Trends Biotechnol ; 34(12): 970-982, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27394390

RESUMO

The ascomycete Trichoderma reesei is one of the most well studied cellulolytic microorganisms. This fungus is widely used in the biotechnology industry, mainly in the production of biofuels. Due to its importance, its genome was sequenced in 2008, opening new avenues to study this microorganism. In this 'post-genomic' era, a transcriptomic and proteomic era has emerged. Here, we present an overview of new findings in the gene expression regulation network of T. reesei. We also discuss new rational strategies to obtain mutants that produce hydrolytic enzymes with a higher yield, using metabolic engineering. Finally, we present how synthetic biology strategies can be used to create engineered promoters to efficiently synthesize enzymes for biomass degradation to produce bioethanol.


Assuntos
Biocombustíveis , Engenharia Metabólica/métodos , Trichoderma , Biologia Computacional , Etanol/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Genoma Fúngico , Proteoma/genética , Proteoma/metabolismo , Transcriptoma/genética , Transcriptoma/fisiologia , Trichoderma/genética , Trichoderma/metabolismo
19.
Curr Genomics ; 17(2): 81, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27226763
20.
Curr Genomics ; 17(2): 82-4, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27226764
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...